Goto

Collaborating Authors

 Hockey


A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics Jonas Günster 1 Niklas Funk 1 Simon Gröger 1

Neural Information Processing Systems

Machine learning methods have a groundbreaking impact in many application domains, but their application on real robotic platforms is still limited. Despite the many challenges associated with combining machine learning technology with robotics, robot learning remains one of the most promising directions for enhancing the capabilities of robots. When deploying learning-based approaches on real robots, extra effort is required to address the challenges posed by various real-world factors. To investigate the key factors influencing real-world deployment and to encourage original solutions from different researchers, we organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference. We selected the air hockey task as a benchmark, encompassing low-level robotics problems and high-level tactics.




Seeing Beyond the Crop: Using Language Priors for Out-of-Bounding Box Keypoint Prediction

Neural Information Processing Systems

Accurate estimation of human pose and the pose of interacting objects, like a hockey stick, is crucial for action recognition and performance analysis, particularly in sports. Existing methods capture the object along with the human in the bounding boxes, assuming all keypoints are visible within the bounding box. This necessitates larger bounding boxes to capture the object, introducing unnecessary visual features and hindering performance in real-world cluttered environments. We propose a simple image and text-based multimodal solution TokenCLIPose that addresses this limitation. Our approach focuses solely on human keypoints within the bounding box, treating objects as unseen. TokenCLIPose leverages the rich semantic representations endowed by language for inducing keypoint-specific context, even for occluded keypoints. We evaluate the performance of TokenCLIPose on a real-world ice hockey dataset, and demonstrate its generalizability through zero-shot transfer to a smaller Lacrosse dataset.


Uncertainty-Aware Reinforcement Learning for Risk-Sensitive Player Evaluation in Sports Game

Neural Information Processing Systems

A major task of sports analytics is player evaluation. Previous methods commonly measured the impact of players' actions on desirable outcomes (e.g., goals or winning) without considering the risk induced by stochastic game dynamics. In this paper, we design an uncertainty-aware Reinforcement Learning (RL) framework to learn a risk-sensitive player evaluation metric from stochastic game dynamics. To embed the risk of a player's movements into the distribution of action-values, we model their 1) aleatoric uncertainty, which represents the intrinsic stochasticity in a sports game, and 2) epistemic uncertainty, which is due to a model's insufficient knowledge regarding Out-of-Distribution (OoD) samples. We demonstrate how a distributional Bellman operator and a feature-space density model can capture these uncertainties. Based on such uncertainty estimation, we propose a Risk-sensitive Game Impact Metric (RiGIM) that measures players' performance over a season by conditioning on a specific confidence level. Empirical evaluation, based on over 9M play-by-play ice hockey and soccer events, shows that RiGIM correlates highly with standard success measures and has a consistent risk sensitivity.


Simulating Tracking Data to Advance Sports Analytics Research

arXiv.org Artificial Intelligence

Advanced analytics have transformed how sports teams operate, particularly in episodic sports like baseball. Their impact on continuous invasion sports, such as soccer and ice hockey, has been limited due to increased game complexity and restricted access to high-resolution game tracking data. In this demo, we present a method to collect and utilize simulated soccer tracking data from the Google Research Football environment to support the development of models designed for continuous tracking data. The data is stored in a schema that is representative of real tracking data and we provide processes that extract high-level features and events. We include examples of established tracking data models to showcase the efficacy of the simulated data. We address the scarcity of publicly available tracking data, providing support for research at the intersection of artificial intelligence and sports analytics.


Chain-of-Thought Reasoning without Prompting

Neural Information Processing Systems

In enhancing the reasoning capabilities of large language models (LLMs), prior research primarily focuses on specific prompting techniques such as few-shot or zero-shot chain-of-thought (CoT) prompting. These methods, while effective, often involve manually intensive prompt engineering. Our study takes a novel approach by asking: Can LLMs reason effectively without prompting? Our findings reveal that, intriguingly, CoT reasoning paths can be elicited from pre-trained LLMs by simply altering the decoding process. Rather than conventional greedy decoding, we investigate the top-k alternative tokens, uncovering that CoT paths are frequently inherent in these sequences. This approach not only bypasses the confounders of prompting but also allows us to assess the LLMs' intrinsic reasoning abilities. Moreover, we observe that the presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer.


REBEL: Reinforcement Learning via Regressing Relative Rewards

Neural Information Processing Systems

While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications, including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g.


Learning Agent Representations for Ice Hockey, Mike Rudd

Neural Information Processing Systems

Team sports is a new application domain for agent modeling with high real-world impact. A fundamental challenge for modeling professional players is their large number (over 1K), which includes many bench players with sparse participation in a game season. The diversity and sparsity of player observations make it difficult to extend previous agent representation models to the sports domain. This paper develops a new approach for agent representations, based on a Markov game model, that is tailored towards applications in professional ice hockey. We introduce a novel framewwork player representation via player generation, where a variational encoder embeds player information with latent variables. The encoder learns a context-specific shared prior to induce a shrinkage effect for the posterior player representations, allowing it to share statistical information across players with different participation rates. To capture the complex play dynamics in sequential sports data, we design a Variational Recurrent Ladder Agent Encoder (VaRLAE). This architecture provides a contextualized player representation with a hierarchy of latent variables that effectively prevents latent posterior collapse.